Boundaries of Right-angled Hyperbolic Buildings *

نویسنده

  • Damian Osajda
چکیده

We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. Corollary: the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group. Mathematics Subject Classification (2000): 20E42, 54F35, 20F67

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Quasi - isometry rigidity for hyperbolic build - ings

Recall that the quasi-isometry group QI(X) of a metric space X is the set of equivalence classes of quasi-isometries f : X → X, where two quasiisometries f1, f2 are equivalent iff supx d(f1(x), f2(x)) <∞ (here we consider G as a metric space with a word metric). One approach to this question, which has been the most successful one, is to find an ‘optimal’ space X quasi-isometric to G and show t...

متن کامل

Lattices Acting on Right-angled Hyperbolic Buildings

Let X be a right-angled hyperbolic building. We show that the lattices in Aut(X) share many properties with tree lattices. For example, we characterise the set of covolumes of uniform and of nonuniform lattices in Aut(X), and show that the group Aut(X) admits an infinite ascending tower of uniform and of nonuniform lattices. These results are proved by constructing a functor from graphs of grou...

متن کامل

Infinite generation of non-cocompact lattices on right-angled buildings

Tree lattices have been well-studied (see [BL]). Less understood are lattices on higherdimensional CAT(0) complexes. In this paper, we consider lattices on X a locally finite, regular right-angled building (see Davis [D] and Section 1 below). Examples of such X include products of locally finite regular or biregular trees, or Bourdon’s building Ip,q [B], which has apartments hyperbolic planes t...

متن کامل

Uniform Lattices Acting on Some Hyperbolic Buildings

Let X be a 2-dimensional right-angled hyperbolic building. We characterise the set of covolumes of uniform lattices in Aut(X). We also show that the group Aut(X) admits an infinite ascending tower of uniform lattices.

متن کامل

Hyperbolic Triangular Buildings Without Periodic Planes of Genus 2

We study surface subgroups of groups acting simply transitively on vertex sets of certain hyperbolic triangular buildings. The study is motivated by Gromov’s famous surface subgroup question: Does every oneended hyperbolic group contain a subgroup which is isomorphic to the fundamental group of a closed surface of genus at least 2? In [10] and [3] the authors constructed and classified all grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006